
Detection of Malware on Android based on
Application Features

Mrs. Gunjan Kapse
Computer Science Department

JSCOE
Pune, India

Prof. Aruna Gupta
Information Technology Department

JSCOE
Pune, India

Abstract— Threat of mobile malware is increasing day by
day. Since Android is the most popular and maximum sold
mobile phone, there is an increasing threat of malware on
Android based mobile device. The different antimalware
products available in market can detect the malware in its
original form. But they cannot detect the malware after
applying some form of obfuscation or transformation to the
malware. The malware detection method based on permission
feature of application can lead to many undetected malwares.
This paper proposes to do more comprehensive static analysis
of application covering more features, in addition to
permission features. This increases the malware detection
strength. The different features which would be analyzed are
permissions and suspicious API calls. Doing this would detect
the malware with more accuracy. The application would be
classified as benign or malware correctly. First the
permissions are extracted from the manifest file and the API
calls are extracted from disassembled code. Weights are
assigned to permissions and API calls based on their
malicious nature. If the total weight of permissions and API
calls of an application exceed a predefined threshold, then the
application is categorized as malware.

Keywords— Malware; Mobile; Android.

I. INTRODUCTION
The number of android applications infected with malware
in Google play store has become almost 3 to 4 times in
2014 as compared to 2012. Cyber criminals use malware to
steal personal information of user. They can access credit
card details; can give ads of particular product when a
person visits a particular web site. Since the use of
Android smart phones is increasing day by day, the
malware is spreading at a very fast rate. The malware gets
into mobile by downloading applications like malicious
games, malicious software, and songs from different
websites. Some times while installing some software, it
asks for various permissions like Send SMS, internet
access, root permission etc. If user gives these permissions
in hurry without reading them completely, then the
malware can take over these permissions and do its bad
work.
Malware detection technique which is permission based, is
not accurate method of detecting malware [1, 2]. Since
same permissions are used by good ware and malware
applications, only permissions system is not sufficient to
categorize an application as benign or malware.
In this paper, we present more comprehensive static
analysis approach of application. We use suspicious API
calls, Filtered Intents and permissions to analyze and
classify an application as benign or malware. First extract
requested permissions and Filtered intents from Android

manifest xml. Then Extract API calls from disassembled
code. Disassembled code is obtained by Dex to jar
conversion [3].
Comparison with Signature Based malware detection:
Most of the anti malwares in industry are signature based.
The signature has to be added for every new malware
coming up. Then antimalware is released with new
updates. User has to update the Anti malware again and
again. It slows down the device since large db of signatures
has to be maintained.
Disadvantage of Signature based: 1. Update the
antimalware again and again.2. High Space complexity:
Large database of malware signature.
We have implemented behavior based detection which
overcomes these disadvantages by not maintain the
signature but analyzing the application features.
The different approaches of malware application analysis
are:
Using static analysis: Statically analyze the application and
checking its features like check different permissions,
application components, different interfaces to components
like broadcast receivers, services, activities etc. Many
variants of a malware can have same service name. It
performs the static program analysis that is not at run time.
It analyses the logical structure, flow and data of the code.
Checking API calls to for the privileges of application.
Tool available for static analysis of application is Smali
[4]. It is an open source tool for static analysis.
Using dynamic analysis: Analyze the application at
runtime to see the malicious behavior. It involves
dynamically monitoring the application in protected
environment. But they cannot be deployed on phones and
detect malicious software directly. They are not deployed
on phones directly since they can damage and destroy all
information on the machine. So they are implemented in
controlled environment. It scans and analyses large volume
of applications. It checks the actions of malware binary at
runtime. It is proven better than static analysis. Hence this
method is applied for offline detection.

II. LITERATURE SURVEY

Mihai Christodorescu, Somesh Jha [5] presented technique
Semantic aware malware detection. It is based on semantic
characteristics of program. Those properties are data flow
and control flow. The binary program is disassembled first.
Control flow graphs are created for each function of
program, and then IR (intermediate representation) is
generated using instruction transformer. Templates are
created for comparison with malicious program. The

Gunjan Kapse et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3561-3564

www.ijcsit.com 3561

instructions in template are mapped with the instructions in
program based on some rules. They both match if there is
an assignment to variables of template node which matches
the program node expression. It checks that the template
variables should have similar update pattern as of program
expression, although they may not have the same values.
Advantages:
1. It can handle different transformations/obfuscations like
reordering of code or instructions. Register renaming can
also be detected since it is doesn’t check the names of
variables in template instructions but it is based on
matching function. Garbage insertion can be detected. 2. It
has low value of false positives indicating that the
tendency of detecting the good ware program as malware
is very less.
Disadvantages:
1. It requires all the IR instructions in template to be of
same form as that in program. For example, if the template
has multiplication operation in the instruction and program
has equivalent left shift operation, then they are not
matched.
2. It enforce that the ordering of memory updates of
program should be same as that of template.

Yu Feng, Saswat Anand [6] presented Apposcopy:
Semantics-Based Detection of Android Malware through
static Analysis. In first step it constructs ICCG (Inter
component call graph) of application which shows
different components, broadcast receivers, activities and
services of application. In second step, it does static taint
analysis that is it tracks the flow of data from source to
sink.
Advantages: 1. High accuracy. 2. Can detect obfuscations
like: Change of component, method, field names. 3.
Method invocations to android classes are redirected using
proxy methods.
Disadvantages:
1. Cannot detect unknown malware family.
2. Cannot detect obfuscations:
 a. Dynamic code loading
 b. Reflection + change of method or class name.
3. Cannot detect malware instantly.
Vaibhav Rastogi, Yan Chen, and Xuxian Jiang [7]
proposed Catch Me If You Can: Evaluating Android Anti-
Malware against Transformation Attacks. He introduced a
framework which transforms the malware in different
forms and test the transformed malware with commercial
antimalware tools. The different obfuscations are:

A. Trivial Obfuscations
Those are the obfuscations which do not need code level
changes. Following are the transformations in this
category.
1) Repack: Unzip the apk (android application package),
insert malware or malicious code and then repackage.
After repackaging/zipping, the apk is released into the app
store. And then zip again with different signature. The
application is signed with custom keys.
2) Disassemble and reassemble: Disassembling and
reassembling of apk is done by Apktool [12]. The jar is

signed with some others name and again the new apk is
created.
3) Change of package name: Package name of application
is changed after getting the code. The code can be obtained
using dex2jar [3].

B. DSA obfuscations
1) Rename identifier: Hackers after getting the APK of
application run Baksmali [11] which is a disassembler.
Hacker can get the byte code. Now hacker can rename
method or field identifier and build it again to create new
apk.
It is the category of obfuscation which can be detected by
static analysis. Following are the obfuscations in this
category.
2) Data encoding: The dex file contains all the strings and
array data which is used in code. They can be used to
develop signature against malware. These strings and array
data are retrieved by hackers after applying reverse
engineering by Apktool [12], encoded in some form and
rebuilt. Thus they cannot be detected.
Daniel Arp, Michael Spreitzenbarth [8] gave method
DREBIN which is effective and explainable detection of
Android malware. This method enables identifying
malware on smart phones directly. It combines static
analysis of all the features of application and then apply
machine learning to classify the applications as benign or
malware. It also provides explanation for malware
detection.
Advantages: It gives very few false alarms. The accuracy
of method is high. It is good for detecting unknown
malware.
Disadvantages: Cannot detect transformations that are not
detectable by static analysis. For example Reflection and
byte code encryption.

III. PROBLEM DEFINITION
To classify an application as benign or malware on
Android mobile.
In Permission based Android Malware Detection technique
given by Zarni Aung, Win Zaw, it does static analysis
based only on permission request features of application.
Based on permissions requested by any application, it is
categorized as malware or good ware application by
machine learning technique. This technique can lead to
many undetected malwares. Also number of false positives
is high.

IV. MATHEMATICAL MODELING AND ALGORITHM
Let S be the set {I, O, P, F, S} where,
I : Input set
O: Output set
P: Process set
F: Failure cases
S: Successful cases
1) Input set I = Set of Android applications.
2) Output set O = Application predicted as benign or
malware.
3) Process set: P = {P1, P2, P3, P4, P5}

Gunjan Kapse et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3561-3564

www.ijcsit.com 3562

 P1=Extraction of Application features from
AndroidManifest.xml:
Extract permissions and Intent filters from Android
manifest.xml. The extraction has to be done in timely
manner and in constrained environment. Represent the
features as sets of strings. Figure 1 depicts the extraction of
Application features.

Figure 1. Mapping of application to features

P2 = Extraction of features from disassembled code.
Extract API calls from disassembled code.
P3: Assign weight to permissions, intent filters and API
calls based on their malicious behavior.
P4: Fix a threshold by analysing different malware and
goodware applications features with help of Virus total
Service.
P5: Add weight of all the permissions, API calls and
malicious intents of application to be tested. If the weight
exceeds the threshold, then it is classified as malware and
it is recommended to check the permissions requested by
the app while installing. Check the necessity of requested
permissions against the app requirement. If app doesn’t
need some particular access and still is requesting for it,
then it is suspicious app.

4) Set F: Failure cases
The system incorrectly classifies a benign app as malware
or a malware as benign app.
5) Set S: Success cases
The system is able to detect malware correctly.
NP Complete: The problem of reliably identifying a
bounded-length virus is NP-complete, since the malware
application can be identified and detected in fixed and
short time.

V. IMPLEMENTATION STRATEGY
1. Extract permissions, Filtered intents from Android

manifest.xml using PackageManager.PackageInfo.
requestedPermissions.and
PackageManager.queryBroadcastReceivers.

2. Extract API calls from disassembled code using dex2jar
[3].

For this, extracts the classes.dex file from apk. Call dex2jar
code to extract the code and API calls. The different text
files with method calls are extracted. Read the methods
from these text files to search the malicious API calls.
3. Assign weight to different permissions, API calls, and

Filtered Intents based on their malicious behavior.
Higher weights are assigned to most dangerous

permissions, API calls which are frequently used in
malwares [9, 2].

4. Fix a threshold of total weight of different features:
permissions, API calls and filtered intents after
analyzing good ware and malware applications.

5. Add the weights of different features extracted from the
application and compare it with the threshold. If the
weight is greater than the threshold, then application is
categorized as malware else it is benign.

We classify the application with two ways:
a. Specific malware detection: Some common malwares of

Android like Droid Kung Fu, Cajino baidu etc and
their variants are identified.

b. Generic malware detection: Malware other than defined
common malwares is identified. Any application can
be scanned and analyzed to determine if it is a benign
or malware.

The requested permissions and API calls are displayed
which the application is using. The total weight of
permissions, API calls and Intents is displayed.
Testing:
a. Download android apk from apk-downloader website

[10].
b. Pass it to Virus total online application analysis tool

which uses 57 antimalware tools to rate an application
on a scale as good ware and malware. It gives the
detection ratio.

c. Now we know if the application is benign or malware.
d. Install the apk on emulator using adb command on

command prompt: adb –s emulator – 5556 install apk
name with full path.

e. Once it is installed, it comes in the dropdown list of
our application and can then be tested.

f. Malware samples can directly be downloaded from
contagiominidump website [11].

Table 1 and table 2 lists some of the malware and benign
applications tested:
DroidKungFu variants:
 a.com.atools.cuttherope-LeNa.b.apk
 b.com.rovio.new.ads-LeNa.c.apk
Cajino baidu variants:
a.Cajino_5F385407A0E547F809AC4BE8B1119B04.apk
b.Cajino_39581735EE24D54F93C8C51D8C39B506.apk
c.Cajino_9342B4ECBB7EB045EDCDB6E0E339E415.apk
d.Cajino_B3814CA9E42681B32DAFE4A52E5BDA7A.apk
_com.aijiaoyou.android.sipphone_1005_1.0.5.apk

_com.electricsheep.master.paintpro_10_2.0.1.apk
_com.sansec_9_V1.0.09.apk
_com.keji.unclear_1_1.0_BC6C20C79AED279B409C614A92
-
- E63BB9.apk
Anserverb.apk

anserverb_qqgame.apk

QQ_tencent.qqgame.lord_24_1.1.apk
BloodvsZombie_com.gamelio.DrawSlasher_1_1.0.1.apk
v1.0_com.GoldDream.pg_1_1.0_F66EE5B-
-8625192D0C17C0736D208B0BD.apk
AndrPJApps-Gen_
f051eeab57e42d569d298ad076c9fb47610e201e.apk

Table 1. Subset of Malware samples tested

Gunjan Kapse et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3561-3564

www.ijcsit.com 3563

com.shoozhoo.imageresizer.apk
me.piebridge.bible.apk
com.hansip87.smallapp.viewer.apk
com.mobikwik_new.apk
com.northpark.pushups.apk
com.onexsoftech.crackscreen.apk
com.piviandco.fatbooth.apk
com.breakingnews.apk
me.piebridge.bible.apk
com.shoozhoo.imageresizer.apk

Table 2. Subset of Benign applications tested

VI. RESULTS
Following are the parameters of evaluation:
True Positive Ratio (TPR):
TPR =TP/TP + FN
TP is the number of malware cases correctly classified.
FN is the number of malware cases misclassified as
legitimate software.
False Positive Ratio (FPR):
FPR = FP/FP + TN
FP is the number of benign apps incorrectly detected as
malware.
TN is the number of legitimate apps correctly classified.
Accuracy:

The total number of the classifier's hits divided by the
number of instances in the whole dataset:
Accuracy = (TP + TN) *(TP + TN) / (TP + FP + TP + TN)

Comparing our system result with Permission based
malware detection applying J48 classifier [2], following
are the numerical results:

Detection method TPR FPR Accuracy

Permission based
detection.

0.87 0.25 81.32%

Detection Based on App
features
(Permissions + API calls)

0.88 0.20 85.0%

The TPR and Accuracy of our system are higher than that
of permission based malware detection. The FPR is lower
than Permission based malware detection.

VII. CONCLUSION
Our proposed method of detection of malware on Android
based on application features which make use of
Permissions, API calls, and Intent filters is proven to be
better than only permission based malware detection. It
yields better TPR and accuracy than Permission based
malware detection. Most of the anti malwares in industry
are signature based which maintains large database of
signatures of different malwares and keep on updating the
signature regularly. In comparison to this, our method is
behavior based which overcomes these disadvantages and
detects an application as malware or good ware based on
its features. It also gives an indication to check the
permissions requested by application while installation that
whether they are really required or not.

VIII. ACKNOWLEDGEMENT
I take this opportunity to express my profound gratitude and deep
regards to my guide Prof. A.K. Gupta for her exemplary
guidance, monitoring and constant encouragement which helped
me in completing this task through various stages. The Blessings,
help and guidance given by her time to time shall carry me a long
way in the journey of life which I am about to embark.

REFERENCES
[1] Zarni Aung, Win Zaw, “Permission-Based Android Malware

Detection,” in IJSTR Vol 2, Mar 2013
[2] Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero,

Pablo Garcia Bringas, and Gonzalo _Alvarez “PUMA: Permission
Usage to detect Malware in Android” in Int. Joint Conf. Springer
2013

[3] [Online].Available: dex2jar: https://code.google.com/p/dex2jar/.
[4] (2013, Dec. 3). Smali/Baksmali: An Assembler/Disassembler for

Androids Dex Format [Online].
Available:http://code.google.com/p/smali

[5] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant,
“Semantics-aware malware detection,” in Proc. IEEE Symp.
Security Privacy, May 2005, pp. 3246.

[6] Yu Feng, Saswat Anand, Isil Dillig, Alex Aiken, “Apposcopy:
Semantics-Based Detection of Android Malware through Static
Analysis,” in ACM SIGSOFT Int. Symp, November, 2014.

[7] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang, “Catch Me If You
Can: Evaluating Android Anti-Malware against Transformation
Attacks,” In IEEE Transactions, January 2014

[8] D. Arp, M. Spreitzenbarth, M. H ubner, H. Gascon, K. Rieck, and C.
Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket,” in NDSS, Internet Society, February 2014,
USA.

[9] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, David
Wagner, “Android Permissions Demystified,” In ACM, October,
2011

[10] http://apps.evozi.com/apk-downloader/
[11] http://contagiominidump.blogspot.in/2011/07/take-sample-leave-

sample-mobile-malware.html
[12] (2013, Dec. 3). Android-Apktool: A Tool for Reengineering

Android APK Files [Online].
Available:http://code.google.com/p/android-apktool.

Gunjan Kapse et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3561-3564

www.ijcsit.com 3564

